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i.\ Introduction and Sumary.

By observing a series system of d components (d 2, 3, ... ) e can

only determine its lifeength and the components that cause the system to fail

In particular the lifelength of a series system that consists of a nonempty

subset of the original d components is unobservable. 41e refeO'to the dis-

tribution function (d.f.) of the lifelength of this series system as an

unobservable d.f. For example, some of the original d components, such

as wires and switches, may be placed in the system to support the operation

of the main components. The d.f. of the lifelength of the series system

that consists only of the main components is of great importance to the theory

of engineering reliability but is unobservable.

Langberg, Proschan, and Quinzi (LPQ) (1978), although addressing themselves

to a different problem present, -In particular, a way to relate the unobservable

d.f.'s to observable quantities (see Th. 4.1). Fir'st, LPQ (1978) define

2d - I observable subdistribution functions (s.d.f.'s). The value of an

unobservable s.d.f. at the point s(s > 0) is the probability that the ori-

9inal series system fails at a time less than or equal to s as a result

of the simultaneous failure of a particular nonempty subset of the d com-

ponents and of no other components. Then LPQ (1978) express the various

unobservable d.f.'s as functionals of the observed s.d.f.'s, whenever the

lifelengths of the d components are independent and satisfy a mild regularity

condition. Thus, they provide the researchars in the theory of engineering

reliability with a theoretical tool to determine the unobservable df.'s.

The problem of relating unobservale d.f.'s to observable s.d.f.'s has been

considered by several other researchers such as Peterson (1975), Tsiatls

(1975), and Ililler (1977).

.... -"Ii - . .... .. . . ..... Zl 
" °
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The theoretical relationship discussed in the previous paragraph suggest

a "naive" method of estimating the unobservable d.f.'s. LPQ (1980) consider

the problem of estimating the various unobservable d.f.'s based on data

collected from n independent and identical series systems each consisting

of d components. First, LPQ (1980) estimate the observable s.d.f.'s by

their empirical counterparts. Then they replace the observable s.d.f's

by their empirical estimators in the respective functionals. Using this

method LPQ (1980) obtain the Product Limit Estimators (P.L.E.'s) for the

observable d.f.'s, first introduced by Kaplan and Meler (1958).

An important statistical problem is to test whether the life distribution

of a component, F, is exponential versus various wearout classes of alter-

natives on the basis of a random sample from the d.f. F in the absence of

the other d-I nuisance components. Tests for these hypotheses have been

proposed, for example, by Proschan and Pyke (1967), Barlow (1968), Bickel

(1969), Bickel and Doksum (1969), Barlow and Doksum (1972), Hollander and

Proschan (1972), (1975), (1979), and Koul (1977), (1978a), (1978b). There

seems to be a growing interest among statisticians to test these hypotheses

in a more realistic situation: Where additional "nuisance" components are

present. Koul and Susarla (1978) and Chen, Ilollander, and Langberg (1980a),

(1980b) suggest tests for some of the hypotheses described above based on

the P.L.E.

In this paper we present a formula that relates unobservable multivariate

d.f.'s to observable multivariate s.d.f.'s. This formula suggest further

development of statistical estimation and testing procedures concerning

multivariate d.f.'s in the presence of "nuisance" components.

k
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Assume that a pair of individuals, a wife and a husband for example,

are under study. The observation of each of the two individuals is terminated

in the event of death or in case of a withdrawal from the study. The joint

lifelengths of the two individuals is of great importance to the theory

of biostatistics but is unobservable.

In Section 2 we relate the unobservable joint life distribution of the

two individuals to observable quantities. First we define 4 observable

joint s.d.f.'s. The value of an observable joint s.d.f. at times t, s(t, s > 0)

is the probability that the two individuals are removed from the study at

times less than or equal to t and s, respectively, as a result of a specific

combination of deaths and withdrawals. Then e express the unobservable

joint d.f. as a functional of the observable s.d.f's, whenever some mild

conditions hold. Thus we provide the researchers in biostatistics with

a theoretical tool to determine the unobservable d.f.

Langberg and Shaked (1980a) utilize the theoretical relationship esta-

blished in Section 2 to estimate the unobservable joint d.f. from a sample

of n independent and identical pairs of individuals. Following LPQ (1980)s

idea they obtain a bivariate P.L.E. for the unobservable bivarite d.f. and

establish the strong consistency, weak convergence and some other desirable

properties of the bivariate P.L.E. (For more details see Langberg and Shaked

(1980a), (1980b)].

In Section 3 we consider a group of p individuals, p a 1, 2, ... , a

family for example, and assume that each individual is exposed to d risks,

d - 2, 3, ... . Using the results obtained in Section 2 we relate the joint

d.f. of the times to deaths of the p individuals from risk j, J - 1, .,., d9

to the observable s.d.f's. The value of an observable s.d.f. at times

4 9M94'



t1 , ... , , ... , t . 0) is the probability that the p individuals die

at times less than or equal to t I , ... , tp, respectively, as a result of

the occurrence of a specific combination of risks.

Finally, we note that although we have chosen to employ the languiages

of reliability theory, biostatistics and the theory of competing risks (series

system, components, death, withdrawal, risks, etc.) the results presented

here apply to any model where observations include (1) The time at which

a particular event occurs and (2) The cause(s) of the occurrence of the event.

As is the case, for example, in mortality studies (Hoel(1972)) and some

mathematical epidemiology models (see Billard, Lacayo and Langberg (1979),

Lacayo and Langberg (1980a), (1980b) and Langberg (1980).)

Throughout ve define a product over an empty set of indicies as 1 and

an integral over an empty set as zero.

I"
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2. The Bivariate case.

Consider a pair of individuals, a wife and a husband for example, with

llfelengths T1 and T2 . The observation of each of the two individuals is

terminated in the event of death or in case of a withdrawal from the study.

Let L1 and L2 denote the withdrawal times of the two individuals respectively.

Je assume that the random variables (r.v.'s) T1 , T2, L1 and L, are defined

on a common probability space (a, B, P).

In this section wie present the joint d.f. of the lifelengths (T1, T2 )

as a functional of observable quantities. To be more specific ve introduce

two definitions and some notation.

Definition 2.1. ife say that individual i is removed from the study due

to death (withdrawal) and write C = l(i = Z) if Tt ( Lt(L i < Tt), i = 1, 2.

Definition 2.2. Let K be a function defined on (-W, ). /e say that

K is a subdistribution function (s.d.f.) if K is nondecreasing, right-

continuous, and assumes values in [0, 1).

Let Ti - min(T 1 , Li ) be the removal time of individual i, and let Gi be the

d.f. of Ti, I = 1, 2. Further, let F(t, s, II  12) = P St. 12 S,

1 1' t2 = 12} 1I I( ' 2) be the observable joint s.d.f.'s and let

I(t, s) - P[T 11 t, T2 < s) be the unobservable joint d.f. of the lifelengths

of the tuo individuals under consideration. For a s.d.f. K, let

T(t) - lim K(s) - Kit) be the subsurvivalfunction corresponding to K, let
SW

(t-) - lImV(s), and let m(K) - sup(t: Y(t) > 0). Further, let KC be the
St"

continuous s.d.f. corresponding to K and let C(K)(O(K)) be the set of all

continuity (discontinuity) points of K. In this section we present the

d.f. I(., *) as a functional of the s.d.f.'s: F(-., I, 12), i, 1* - 1, 2,

provided that:

• i

4, _ _ _ _ i . ,. .;" li, . .-, . ..
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(A.1) The llfelenqths (T,, T,) and the withdrawal times 1 , L) are inde-

pendent random vectors,1 and that
(A.2) For 1 1, 2, the sets D(P(Ti 41 1)) and O(P(T1 <., F 2))

are disjoint.

First, we reduce the problem of obtaining the desired functional that

relates the observable joint s.d.f.'s to the unobservable joint dM. con-

cerning two individuals to a similar, but simpler problem, concerning only

one individual. N~ote that by Assumption (A.1)

(2.1) P(T I > t, T 2 > s) = PiT 1 > tIT 2 > s)P{T, > S)

PIT 1 > tIr2 > slP(T2 > s) for t(Q),se(-,a(G 2))2

(2.2) The r.v.'s T12 and L 2 are independent,

and that

(2.3) For se(-,a(G 2)) the conditional r.v.'s {T1 IT2 > s) and (1I2> s'1* are independent.

Further, by (A.2):

(2.4) For se(-,c(G 2)) the sets D(P{!1 j -, =l ljr2 > s)) and

O(P(i1 j * , -= 2k > s)) are disjoint.

Observe that to express ii(-, -) as a functional of the s.d.f.'s:

F1'S 111 '2)1 11g 12 - 1, 2, it suffices (a) to express P(T2 > -) as a

functional of the s.d.f.'s: P C,. -, 12j L 2) P(r2 1 -, L 2 4 T1,

(b) to express Pff 1 > -IT 2 > s) as a functional of the s.d.f. s:

PITI S .,T~ L1IT? >s), Pit1 . , < T11 T2 > s) for every se(-,*(G2)) and
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(c) to insert these functionals in Equation (2.1). This is done in Theorm

2.5, but first we need some preliminaries.I Let T and L be two independent r.v.'s representing, respectively, the
lifelength and withdrawal time of a single individual. Further, let

T= min(T, LI be the removal time of the individual from the study and let

G denote the d.f. of T. We express now the unobservable survival function:

I'{T > .1as a functional of the observed s.d.f.'s: P(r * T < LI,

Ph<., L ( TI. The following lemmna is useful.

Lemmna 2.3. Let Q()be a s.d.f. Then for (m ())

ii~t) 14lmi(u){ a [tEi(a)]tIQ(a-)) 4I

(2.5) a0i(Q)

t1
.exp{-f (iQ(a)]Y dQC(a)).

For a proof of Lemmna 2.1 see Lee and Thompson (1976), Th. 2.Z.

Lie present now the desired functional for a single individual.

Lenmma 2.4. Let C and Ui be, respectively, the sets of continuity and

discontinuity points of the s.d.f. P(T (. T (LI. Assume that:

(A.3) The r.v.'s T and L are independent,

and that

(A.4) The sets U and L)(P(T < *, L < TI) are disjoint.

Then for te(-m a(G)):

P{T > ti = ii (ua3Ga)-
a~t

(2.6) aDl

t1
.exp(-f 1T(a)]j dP{Tg((-,aJ)nC, T < LII.

Proof. B~y Assumptions (A.3) and (A.4)
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(2.7) P(a)[ (a-)] "  - P(T > a}[P(T > a)]i1, ac(- a(G)).

a
(2.8) P{T < a, T < L = f P{L > vidP{T < vi, ac(--, -)

a
P(T < a, L < Ti = f P{T > v)dP(L < vi, ae(--, -),

and

(2.9) P(T > a) = P{T > aIP{L > ai, ac(--, =).

Thus, by Assumption (A.4)

(2.10) The sets D(P{T < .I)n{(-, a(G)) and

)(P{L < .})n(--, a(G))) are disjoint.

Let X denote the indicator function. Then by Assumption (A.3) and

Equations (2.8), (2.9) and (2.10):

t
(2.11) f x(C)(a)EU(a)I' ldP{ T < a, T < LI =

-in

t
= x(C)(a)[P{T > all' dP{T < a), te(-,a(G)).

Finally, note that a(G) < sup{t: P{T > t) > 0 and that Cn{(--,a(G))} =

C(PIT < .})n((-,a(G))}. Consequently the desired result follows from

Equations (2.5), (2.7), and (2.11). II

lie return now to our original problem, and present the functional that

relates the joint d.f. of the lifelengths of the two individuals considered

to their observable s.d.f.'s.

Theorem 2.5. Assume (T, T2 9 L10 2) satisfies Conditions (A.1) and

(A.Z). Let C2(D2) be the sets of continuity (discontinuity) points of the
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s.d.f. P{r 2 
- " , T2 

- 12). let Cl,s(ls) be the sets of continuity (discon-

tinuity) points of the conditional s.d.f. PIT1 ., T1 < L11T2 > s), and

let =ls - sup{t: P{I 1 > tlr 2 > s' > 0), se(--,a(G2 )). Then for

(t. s)-E{(u,v): v(-aG) '(91v)

P{T1 > t, T2 > s) = I

u~suCD2

v~t
S<

-expl-' [i2(u) fix(C2 )(u)dP{T2 u, T2  L

t -

*exp{-f [PT 1 > v I2 > s I'x(C1,s)(v)dP(T1  v, T1 _ LiIjT > sI).

Proof. First note that by Assumptions (A.1) and (A.2) Conditions (A.3)

and (A.4) hold for (T, L) = (T2, L2).

Thus, by Lemma 2.4 for sE(--,a(G2 )):

P{T 2 > s) = { a~ s h 2 ~a)][ 2(a-

(2.13) a6D 2

exp{-f [2(u)3"x(C2)(u)dP{T 2 _ u, T2  L L2)

Let s (-m,*(G2 )). Note that by Assumptions (A.1) and (A.2) Conditions

(A.3) and (A.4) hold for the random pair (T, L) that is stochastically equal

to the conditional random pair [(T,, LI)IT2 > s). Thus, by Lemma 2.4 for

t-(",al's) :

P{T 1 > tIt 2 > S) s}= P{t 1 > vIT 2 > S)][P{t I. VIT2 >)] "!

v<t

(2.14) V0 's
t P

*exp{-f a P(r1 > vljr 2 > S)3' x(Cj 5)(v)dPh 1 5 v, T1 , L, 1112 > s))'
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Consequently the desired result follows by Equations (2.1), (2.13)

and (2.14) by insertion. I

In many life testing situations the d.f.'s of the lifelengths and censoring

times of the two individuals considered are anticipated to be strictly In-

creasing smoothly on (0, -). For these cases we obtain now from Theorem 2.5

a corollary of practical importance.

Corollary 2.6. Let T1 , T2 be continuous r.v.'s such that for t, sc(--,-)

P{T1 > t, T2 > s), P(L1 > t, L2 > s) are strictly positive. Assume Condi-

tion (A.1) holds. Then for t, sc(-a,.):

P{T1 > t, T2 > s) = exp{-f [lG(u)] dp(T2 _ u, T2 < L2

(2.15

[P{T 1 > vIT 2 > s)]'ldP{T1  v, T1 _ L11 T2 > s)).

m

Proof. Apply Theorem 2.5 and note that (G2) *I,s =

and that 02, 01 sC(-,-) are empty sets. II

Finally, we note that the relationship between the unobservable d.f. and

the observable s.d.f's given by Equation (2.12) holds for some cases where

the independence assumption, given by (A.1), does not hold. First, ie present

a necessary and sufficient condition for the relationship given by (2.12)

to hold. Then we give an example for which Assumption (A.1) does not hold,

however the desired relationship, given by Equation (2.12), holds. We need

the following lemma.

Lemma 2.7. (LPQ (1980), Th. 4.4) Let (L, T) be a pair of r.v.'s

defined on a common probability space. Let C, 0 be as in Lemm 2.4, but

A ___________________________________
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now do not assume Conditions (A. 4 cr (,A.4). Then equation (2.6) holds

if the following conditions are satisfied.

(A.5) [P(T > t)][PfT >W
"  -

- _1 ,t(Cfl((--,s(G) )1,

and

(A.6) For ttCn((--,a(G))), PL > tIT =t

P(L > tIT > t) a.s. with respect to P(T < -}.

We are ready to present the necessary and sufficient conditions.

Theorem 2.8. Let T1, L1, T2 , and L2 be r.v.'s defined on a comnon

probability space. Let C2, D2, C1,s, Ul ls o al1s , sc(--,a(G2)) be as in

Theorem 2.5. Assume Ccndition ' 7.) h" . Then Equation (2.12) holds

1ff the following conditions hold.

(A.7) [P{T2 > s}][P{T2 >s1]
1  = GL (t )]C[ 2(t )]-'I  e ' (,

teC2 nl{(--,s(G 2 )))

(A.8) [P{T1 > t, T2 > s}J[P(T1  t, T2 > s }]'l

[P{I > t, T2 > s)][P( 1 _ t, 12 > si]"1 teol's n(-.,als )}

•tecl n{( a~)},

for te(-ua.s ), sE(-W,,(G 2 )).

(A.9) For seC2n((--,a(GZ))), P(L2 > sIT 2  s) =

P(L2 > siT 2 > s) a.s. v.ith respect to PT 2 T -},

and

(A.10) For taC Isn((--,,s)). s(-.,((a2))

P{L1 > tIT 2 > s, T1 a t) a P&L1 > tIT 2 > s, T1 > t
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l a.s. with respect to P(T1 < I > s).

Proof. Rote that

(2.16) P{T2CB,eT2 _ L2) = fP{L2 > ulT 2 - u)dP(T2 _ u)

B 2 u

for all Borel sets in (-m,a(G2)) and that

(2.17) P(T1 0, T, < LIT2 > s' =

= JP{L1 > uT2 > s, T, = u)dP{T1 <UT 2 > s)

B

for all Borel sets in (--,a(G1)).

First, assume Conditions (A.7) through (A.1O) hold. Then Equation

(2.12) follows by substitutoii and by Equations (2.6), (2.16) and (2.17).

'ow, assume that Equation (2.12) holds. Then in particular the equa-

tion holds for t = 0, sc(-e,a(G2 )). Conditions (A.7) and (A.9) follow now

by Lemma 2.7. Since from (A.7) and (A.9) the pair (T2, L2) satisfies Equa-

tion (2.6), it follovs from Equations (2.1) and (2.12) that the conditional

pair ({T1I > 2 > s), se(--,a(G2)) satisfies Equation (2.6).

Thus, Conditions (A.8) and (A.10) follow by Lemma 2.7. II

Finally we present an example where the independence assumption, given

by (A.1), does not hold, but the desired relationship given by Equation (2.12)

is satisfied.

The following definition is needed.

Definition 2.9. (harshall and 0lkin (1967).) Let XI, * 1 I ( 1, ... , n)

be nonnegative real numbers, E Al > 0, and let VI, *$ I c(1, ..., n}

be independent exponential r.v.'s with rates XI, , j I c{1, ... , n,

respectively. The random vector < U19 ... , Un > has a i, arshall-Olkin Multi-

variate Exponential Distribution (i:.0.n.E.D.) with parameters

.
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0i Jc{l, ... , n) if the tWo random vectors <Ul,..., Un > and

< min{Ui: I, 14), ... , mln{ui: I,nEI) > are stochastically equal.

Example 2.10. Let ( U1 , *.., U4 > have a A,.1X.E.D, with parameters

Alt # Ic{1, ... , 4), and let us assume that < T1, T2 , L1, L2 > and
< U1 D ... , U4 > are stochastically equal. Let D2 and- (G)

4,s a ,s,, ( G)

be as in Theorem 2.5. lote that a(G2 ) = = -, that D2, DI s are empty

sets, and that the two random pairs (T1 , T2 ) and (Ll, L.) are not necessarily

independent. tie want to show that formula (2.12) holds. To obtain the

desired result it suffices, by Theorem 2.8, to verify conditions (A.9) and

(A.1O). These two conditions follow by some simple calculation with inde-

pendent exponential r.v.'s. Equation (2.1) does not hold in general, however if

S(1,3,4) A'1 ,4 ) a 0, then Equation (2.1) holds.

Note that by Assumption (A.1)

P(T1 > t, T2 > s} = PUT2 > S IT, > t}P{T 1 > tWfor
SE(--, -n), tc(--,cs(G1 )).

Thus, Theorems 2.5, 2.8, and Corollary 2.6 hold when we exchange T1 and

T2 and L1 and L 2.

Finally, note that the if ve exchange T1 and L1 and T2 and L2 Theorems

2.5, 2.8, and Corollary 2.6 hold for the random pair (Llt L2).

22)
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3. The I:ultivariate Case.

Consider a group of p individuals, a family for example. p = 1, 2, ... ,

and assume that each individual is exposed to d risks, d = 2, 3, .... Let

denote the time to death of individual i from risk j by a nonnegative r.v.

Ti~ j , i = 1, ... 9 p, and let T0,j - a i I, ... , d. Assume that all these

r.v.'s are defined on a common probability space (Q,1,P).

In this section we present the joint d.f. of the tines to death of

the p individual from risk j: P(T1  _ , ... , Td, j < -} as functionals

of observable quantities. To be more specific we introduce some notation.

Throughout we fix the risk considered and denote it by j. Let LIj -

min{Tq, q = 1, ... , d, q 0 j), let TI = min{Li1j Ti.j) be the lifelength

of individual I and let Gi be the d.f. of TI . i = 1, ... , p. Further, let

Cij 1 1 on the set (Ti j SL i j } , and = 2 on the set {L i j  T T j ,

i = 1, ... , p, let 11(t , ... , tp) P(TI j j ti , i = I, p..., be the

probability that the p individuals die at times less than or equal to t1, .. , tp

respectively, from risk j in the absence of all the other risks, and let

F 4t .00 t 1 00 IFj I , .. , p, I , . , Ip) : i  _i t, (i~j = lit i " 1, ... , p0 ,

= 1,2, 1 = 1,..., p, be the observed s.d.f.'s: the probability

that the p individuals die at times less than or equal to t1 , ... , tp, respectively,

as a result of a specific combination of risks. In this section we present

each of the unobservable d.f.'s ii (., ... , .) as a functional of the observed

s.e.f.'s: Fj(., ... , -, I I , ... , Ip), provided that:

(BS.1) The random vectors < T,q, ... p >, q 1 1, ... , d are independent,

and that

(6.2) For r - 1, p.., p the sets:
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U(P(TrS "' &r,q = 1) and D(P{Tr 1. 01r,q = 2)) are disjoint.

Theorem 3.1. Let CJ . 1(to9,tO,.. ) be the sets of contin-

uity (discontinuity) points of PITr< r = 1, t > t1, -0 , ... , r -1),

r = 1, *.., p, t1  , tp(-,-), t= -t . Further, let al,to

sup(t: PIT > U > 01, ~ suplt: PTr > t i 1 > t1, .... Tr > tri 1 ,
suplt: P{ 1 >t 0} r,tO,,...,tr-1

tl( Ulto t2 < c2,to ... tr < ar,t0 ' -9 tri r = 2, ... , p,

to - -W. Assume Conditions (B.1) and (B.2) hold. Then for (to, ... , t )e

{(Uo, .., up): u0 = r < ar,UO,...,Ur.I I r = 2, ... , p),

(3.1) P(T1.j > tl, ... , Tp'j > tp} =

P
[ I n [P{Tr > a, Ti > tI , i = 1,
r=1 alt

r,to,...,t r -1

S[PlTrL a , Ti < ti, i = 1, ... , r - 1 ]-1

exp{-P=I tP[PT r > a, TI > tip i = 0, ..., r - l}JIx(CJt0 tr (a)

dP{rrT a, rj = 1, TI > tt' i = 0, ... , r - 1)).

Proof. First, note that by Condition (B.1)

PTI > t1, ... , Tp'j > t p =

P

r-1 Jrj > t 1 I = 0, .... r - 1)
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Consequently the desired result follows now by Condition (B.2) and Theorem

2.5 applied to the conditional pairs [(Tr, P ILrj )Iri > till 1 0, . r -1)

r - , .p.I
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